This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK



# Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

# Distribution and Roles of Purinoceptor Subtypes

G. Burnstock<sup>a</sup>

<sup>a</sup> Department of Anatomy & Developmental Biology and Centre for Neuroscience, University College London, London, UK

To cite this Article Burnstock, G.(1991) 'Distribution and Roles of Purinoceptor Subtypes', Nucleosides, Nucleotides and Nucleic Acids, 10:5,917-930

To link to this Article: DOI: 10.1080/07328319108047230 URL: http://dx.doi.org/10.1080/07328319108047230

### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

#### DISTRIBUTION AND ROLES OF PURINOCEPTOR SUBTYPES

G. Burnstock
Department of Anatomy & Developmental Biology
and Centre for Neuroscience
University College London
Gower Street
London WC1E 6BT, UK

<u>Abstract</u>. The basis of the established subdivision of receptors for purines into  $P_1$ -purinoceptors for adenosine and  $P_2$ -purinoceptors for ATP and ADP is considered, as well as the proposals for subdivision of  $P_1$ -purinoceptors into  $A_1$  and  $A_2$  subtypes and of ATP receptors into  $P_{2X}$ -,  $P_{2Y}$ -,  $P_{2Z}$ - and  $P_{2T}$ -purinoceptor subtypes. The distribution and roles of these receptor subtypes in muscles, nerves and other tissues, including endothelial and epithelial cells, hepatocytes, blood cells, fibroblasts and astrocytes, are discussed.

It has been known since the seminal studies of Drury and Szent-Györgi  $^1$  that purine nucleotides and nucleosides have widespread and potent extracellular actions on excitable membranes. Later, it was proposed that ATP was released as the principal neurotransmitter from some non-adrenergic, non-cholinergic ('purinergic') nerves  $^2$  or as a cotransmitter with noradrenaline, acetylcholine and other substances  $^3$ ,  $^4$ . In 1978, Burnstock  $^5$  recognized separate receptors for adenosine and ATP which he termed  $P_1$ - and  $P_2$ -purinoceptor subtypes, respectively. Subsequently, biochemical, pharmacological and receptor-binding studies have led to a proposed subdivision of the  $P_1$ -purinoceptor into  $A_1$ - and  $A_2$ -receptors and  $P_2$ -purinoceptors into  $P_{2X}$ ,  $P_{2Y}$ ,  $P_{2Z}$  and  $P_{2T}$  subtypes  $^6$ -  $^9$ .

#### SUBTYPES OF PURINOCEPTORS

### P<sub>1</sub> and P<sub>2</sub>-purinoceptors

A basis for distinguishing two types of purinergic receptor was proposed following an analysis of the voluminous literature about the actions of purine nucleotides and nucleosides on a wide variety of tissues <sup>5</sup>. Since that time, many experiments have been carried out that support and extend this proposal 9,10. Classification into  $P_1$ - and  $P_2$ purinoceptors was based on four criteria: the relative potencies of ATP, ADP, AMP and adenosine; the selective actions of antagonists, particularly methylxanthines; the activation of adenylate cyclase by adenosine, but not by ATP; the induction of prostaglandin synthesis by ATP, but not by adenosine. Thus the following classification was proposed:  $P_1$ -purinoceptors, which are more responsive to adenosine and AMP than to ATP and ADP, methylxanthines such as theophylline and caffeine are selective competitive antagonists and occupation of P1purinoceptors leads to inhibition or activation of an adenylate cyclase system with resultant changes in levels of intracellular cyclic AMP (cAMP);  $P_2$ -purinoceptors, which are more responsive to ATP and ADP than to AMP and adenosine, are not antagonized by methylxanthines, do not act via an adenylate cyclase system, and their occupation may lead to prostglandin synthesis.

Evaluation and expansion of this purinoceptor subclassification has taken several directions, including studies of the stereoselectivity of  $P_1$ - and  $P_2$ -purinoceptors, the structural requirements for the actions of purines on these subclasses of purinoceptors, analysis of the influence of ectoenzymatic breakdown of nucleotides and uptake of adenosine on measurements of relative agonist potencies, and development of more potent and selective  $P_1$ - and  $P_2$ -purinoceptor antagonists 11-14. Since extracellular breakdown of ATP is rapid, some of the actions of ATP and ADP are mediated via  $P_1$ -purinoceptors following breakdown to adenosine 15.

### P<sub>1</sub>-Purinoceptor subtypes

The  $P_1$ -purinoceptor was subdivided into  $A_1/R_1$  and  $A_2/R_a$  subtypes according to the relative potencies of a series of adenine analogues and also according to whether they increased or decreased adenylate cyclase activity  $^{16,17}$ . In general,  $A_1$ -receptors are preferentially activated by  $N^6$ -substituted adenosine analogues, whereas  $A_2$ -receptors show

preference for 5'-substituted compounds. Thus for  $A_1$ -receptors: L-N<sup>6</sup>-phenylisopropyladenosine (L-PIA), N<sup>6</sup>-cyclohexyladenosine (CHA)>2-chloroadenosine (CAD)>5'-N-ethyl-carboxamidoadenosine (NECA), D-PIA and adenylate cyclase activity is decreased; while for  $A_2$ -receptors: NECA>CADO>L-PIA, CHA and adenylate cyclase activity is increased. There have been some problems with this subclassification on the basis largely of inconsistent potency series in different tissues, particularly between central and peripheral tissues, but the recent efforts to develop selective antagonists for  $A_1$  and  $A_2$  subclasses is giving more credibility to this classification  $^{18}$ .

An  $A_3$  subclass of the  $P_1$ -purinoceptor has been claimed for an adenosine receptor present in the heart and nerve endings that is not coupled to adenylate cyclase  $^{19}$ . Although  $A_1$  and  $A_2$  adenosine receptor agonists have been shown to alter the levels of cAMP, the involvement of such changes in the production of the final response is unclear. underlines the view that a receptor is best conceived as being constructed of two units: a recognition component and a catalytic component. It is entirely possible that the same recognition component (e.g. A<sub>1</sub> or A<sub>2</sub>) could be linked to a variety of catalytic components (e.g. stimulatory or inhibitory regulatory units of adenylate cyclase or Ca<sup>2+</sup> channels) in the same or different cell types. Hence, it is preferable not to classify adenosine receptors according to their effect on adenylate cyclase, at least until the linkage between receptor occupation and cAMP levels is understood more thoroughly. Another type of recognition site modulating the activity of adenylate cyclase, but not susceptible to blockade by xanthines, the intracellular "P site", has also been described, although the physiological significance of this site is not known 20.

## Subclassification of the P2-purinoceptor

 $P_{2X}$ - and  $P_{2Y}$ -purinoceptor subclasses were proposed on the basis of relative potencies of ATP analogues and selective antagonism  $^7$ . Thus for  $P_{2X}$ -purinoceptors:  $\alpha,\beta$ -methylene ATP  $(\alpha,\beta$ -meATP)> $\beta,\gamma$ -meATP>ATP, 2-methylthio-ATP (2-Me.S.ATP), while arylazidoaminoproprionyl-ATP (ANAPP3) is a selective antagonist and prolonged exposure to  $\alpha,\beta$ -meATP selectively desensitizes this receptor  $^{21}$ . For  $P_{2Y}$ -purinoceptors: 2-Me.S.ATP>>ATP> $\alpha,\beta$ -meATP,  $\beta,\gamma$ -meATP, while reactive blue 2, an anthraquinone sulphonic acid derivative, has been claimed to be a

selective antagonist, at least over a limited concentration range 22-24. Studies of the pharmacological actions of isopolar phosphonate analogues of ATP on guinea-pig taenia coli and bladder have supported the  $P_{2X}$ ,  $P_{2Y}$ subdivision of P2-purinoceptors in smooth muscle and have also shown that L-adenosine  $5'-(\beta,\gamma-methylene)$  triphosphonate and its analogues are selective agonists of the  $P_{2X}$ -purinoceptor  $^{25}$ , while adenosine 5'-(2fluorodiphosphate) (ADP- $\beta$ -F) is a specific agonist for the  $P_{2V}$ purinoceptor, mediating relaxation of smooth muscle 26. Recently, suramin has been used as a competitive but non-selective  $P_{2X}$ - and  $P_{2Y}$ purinoceptor antagonist in several preparations 27-29. The receptors for ATP on platelets and mast cells (and other cells of the immune system) do not seem to fit this subclassification and have been termed  $P_{2T}$ - and  $P_{2Z}$ -purinoceptors, respectively  $^8$ . A  $P_{2S}$ -purinoceptor was tentatively proposed for receptors to ATP in the guinea-pig ileum 30, but this needs confirmation. TABLE 1 summarizes the purinoceptor subclassification currently in use and lists some of the selective agonists and antagonists used for these receptors.

The transduction mechanisms associated with  $P_2$ -purinoceptor activation are beginning to be understood. The excitatory actions of ATP acting on  $P_{2X}$ -purinoceptors on vascular and visceral smooth muscle cells appear to be associated with the opening of non-selective cation channels, resulting in depolarization and subsequent opening of voltage-dependent  $Ca^{2+}$  channels 31-33. In addition, in some arterial smooth muscles, it has been claimed that increased calcium influx is also the result of direct activation of ATP-gated cation channels without any requirement for depolarization  $3^4$ . In patch-clamp studies of developing chick skeletal muscle, external ATP has also been shown to activate cation-selective channels  $3^5$ . The effects of ATP in neuronal cells are complex, but one direct effect is a rapid depolarization caused by increased cation conductance  $3^6$ .

Extracellular ATP acting on  $P_{2Y}$ -purinoceptors stimulates inositol 1,4,5-trisphosphate production and intracellular  $Ca^{2+}$  mobilization in hepatocytes  $^{37}$ , adrenal medullary and other vascular endothelial cells  $^{38}$ , aortic and ventricular myocytes  $^{39}$ , erythrocytes  $^{40}$ , Ehrlich ascites tumour cells  $^{41}$  and chick myotubes  $^{42}$ .  $P_{2Y}$ -purinoceptors coupled to phospholipase C activation and intracellular  $Ca^{2+}$  mobilization have also been demonstrated in primary cultures of sheep anterior pituitary cells

"P"

(Adenosine)

Intracellular binding site

|                          |                   | 1. SUBCLASSIFICATION OF FUNINOCEFICIAS |                           |                                                                  |  |
|--------------------------|-------------------|----------------------------------------|---------------------------|------------------------------------------------------------------|--|
|                          |                   | Agonists                               | Antagonists               | Main Actions                                                     |  |
| P <sub>1</sub>           | A <sub>1</sub>    | R-PIA                                  | XAC                       | Prejunctional inhibition  Negative ino- and chronotropy of heart |  |
| (Adenosine)              |                   | CHA                                    | DPCPX                     |                                                                  |  |
|                          |                   | CCPA                                   | CGS15943                  |                                                                  |  |
|                          | A <sub>2</sub>    | NECA                                   | CGS15943                  | Relaxation of smooth muscle                                      |  |
|                          |                   | CGS21680                               | PD 115,199                |                                                                  |  |
|                          | A <sub>3</sub> ?  |                                        |                           |                                                                  |  |
| P <sub>2</sub> (ATP/ADP) | P <sub>2X</sub>   | α,β-MeATP                              | ANAPP <sub>3</sub>        | Contraction of visceral and vascular                             |  |
|                          |                   | L-AMP-PCP                              | $\alpha$ , $\beta$ -MeATP | smooth muscle                                                    |  |
|                          |                   |                                        | Suramin                   |                                                                  |  |
|                          | P <sub>2Y</sub>   | 2-MeS ATP                              | RB2                       | Relaxation                                                       |  |
|                          |                   | ADP-β-F                                | Suramin                   | Endothelium-dependent vasodilatation                             |  |
|                          |                   | 1                                      |                           | Secretion                                                        |  |
|                          | P <sub>2Z</sub>   | ATP <sup>4</sup> -                     | 2MeS-L-ATP                | Mast cell<br>degranulation                                       |  |
|                          | P <sub>2T</sub>   | ADP                                    | 2-C1-ATP                  | Platelet aggregation                                             |  |
|                          |                   | 2-MeS ADP                              |                           |                                                                  |  |
|                          | P <sub>2S</sub> ? |                                        |                           |                                                                  |  |

TABLE 1. SUBCLASSIFICATION OF PURINOCEPTORS

R<sub>2</sub>PIA, R-N<sup>6</sup>-phenylisopropyladenosine; XAC, xanthine-amine congener; CHA, N<sup>6</sup>-cyclohexyladenosine; DPCPX (PD 116.948), 1,3-dipropyl-8-cyclopentyl xanthine; CCPA, 2-chloro-N<sup>6</sup>-cyclopentyladenosine; CGS15943, 4-amino-2-(2-furyl)[1,2,4]triazolo[1,5-c]quinazoline; NECA, N-5'ethylcarboxamido adenosine; PD 115,199, N-[2-(dimethylamino)ethyl]-N-methyl(-4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)benzenesulphonamide; CGS21680, (2-p-carboxyethyl)phenethylamino-5'-N-carboxamidoadenosine; α,β-MeATP, α,β methylene ATP; ANAPP<sub>3</sub>, arylazidoaminopropionyl-ATP; L-AMP-PCP, L-β,γ-methylene ATP; 2-MeS ATP, 2-methylthio ATP; RB2, reactive blue 2; ADP-β-F, adenosine 5'-(2-fluorodiphosphate); 2-MeS-L-ATP, 2-methylthio-L-ADP; ADP, adenosine diphosphate; 2-MeS ADP, 2-methylthio ADP.

 $^{43}$  and turkey erythrocyte membranes  $^{40}$ . The inhibitory actions of ATP acting on  $P_{2Y}$ -purinoceptors that lead to hyperpolarization of smooth muscle cells of the intestine appear to be associated with selective opening of K<sup>+</sup> channels  $^{44}$ .

### DISTRIBUTION AND ROLES OF PURINOCEPTOR SUBTYPES

Purinoceptors of various kinds have been identified on a wide variety of cell types (see TABLE 2). In general, adenosine is inhibitory in its actions, whereas ATP is either excitatory or inhibitory.

ATP has been proposed as a transmitter or cotransmitter in autonomic nerves supplying visceral and vascular organs 4,45,46. Postjunctional receptors for ATP are implicit in the purinergic transmission mechanism: thus it is not surprising that Po-purinoceptors are present in many smooth muscles. In some muscles, for example those in the intestine and rabbit portal vein, ATP acting via Povpurinoceptors is a potent relaxant, whereas in other muscles, for example those in the urinary bladder, vas deferens and most vascular smooth muscles, ATP acting via Pox-purinoceptors has a potent contractile action 7. P<sub>1</sub>-purinoceptors (usually of the A<sub>2</sub> subtype) mediating relaxation are widespread in both vascular and visceral smooth muscle. Both  $P_1$ - and  $P_2$ -purinoceptors have been identified in the vertebrate heart 47,48. It is proposed that the P<sub>1</sub>-purinoceptor present in heart is of the  $A_3$  subtype  $^{19}$ . From a study of the effects of ATP on the papillary and right ventricles of the rat, it has been suggested that  $P_2$ -purinoceptor activation induces both a positive inotropy and an increase in inositol-lipid metabolism 49. The P2-purinoceptors have been identified in developing myotubes 35,42,50.

Adenosine, acting via prejunctional  $P_1$ -purinoceptors (usually of the  $A_1$  subtype), is a potent modulator of transmitter release from terminal varicosities of peripheral adrenergic and cholinergic nerves  $^{51}$ . The  $P_1$ -purinoceptors are particularly prominent in the brain where their main role appears to be neuromodulatory  $^{13,52}$ .  $P_2$ -purinoceptors have been described on cell bodies of sensory neurones in nodose ganglion, spinal cord and brain  $^{36,53,54}$  and also on intrinsic ganglionic neurones in heart and bladder  $^{55-57}$ . There are  $P_2$ - as well as  $P_1$ -purinoceptors on astrocytes  $^{58,59}$ .

TABLE 2. DISTRIBUTION AND ROLES OF PURINOCEPTORS

| Tissue Purin                | oceptor                                                                                   | Principal Action                                                |
|-----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| NERVES                      |                                                                                           |                                                                 |
| Sympathetic                 | $P_1 (A_1)$                                                                               | Inhibition                                                      |
| Parasympathetic             | $P_1^1 (A_1)$                                                                             | Inhibition                                                      |
| Purinergic                  | $P_4$ $(A_4)$                                                                             | Autoinhibition                                                  |
| Sensory                     | $P_1$ $(A_1)$                                                                             | Excitation                                                      |
| NEUROBLASTOMA               | $^{1}_{P}^{2Y}$                                                                           | Elevation of cAMP                                               |
|                             | $P_1^{-1}(A_2)$                                                                           |                                                                 |
| ASTROCYTES (CNS)            | F <sub>1</sub> 1                                                                          | Hyperpolarization                                               |
| MUSCLES                     | P <sub>2</sub>                                                                            | Accumulation of $IP_{3}$                                        |
| Smooth muscle               | D                                                                                         | Contraction                                                     |
|                             | P <sub>2X</sub><br>P <sub>2Y</sub>                                                        |                                                                 |
| (visceral and vascular)     | P2Y,                                                                                      | Relaxation                                                      |
| **                          | $^{P}_{1}$ $^{A}_{1}$                                                                     | Relaxation                                                      |
| Heart muscle                | $P_1$ (A3?)                                                                               | Inhibition                                                      |
|                             | $P_{2X}/P_{2Y}$                                                                           | Excitation/Inhibition                                           |
| Developing myotube          | P <sub>2</sub> '' - '                                                                     | Excitation                                                      |
| RETINAL PERICYTES           | $P_2$                                                                                     | Contraction                                                     |
| ENDOTHELIAL CELLS           | $P_{2V}^{2}$                                                                              | Increase in EDRF                                                |
| FIBROBLASTS                 | P <sub>2Y</sub><br>P <sub>2X</sub><br>P <sub>1</sub>                                      | Contraction; Depolarization                                     |
| HEPATOCYTES                 | $P_4^{\angle \Lambda}$                                                                    | Activates adenylate                                             |
|                             | - 1                                                                                       | cyclase                                                         |
|                             | P                                                                                         | Glycogenolysis                                                  |
| ADIPOCYTES                  | P <sub>2Y</sub>                                                                           | dij cogonoijbis                                                 |
| CAROTID CHEMORECEPTORS      |                                                                                           | Excitation                                                      |
| THYROID CELLS               | $P_1$ (A <sub>2</sub> )                                                                   | DACTURETON                                                      |
| ININOID CELLS               | <sup>P</sup> 1 (A2)                                                                       | Ingressed ID turneren                                           |
| IIIIMAN AMNITON OPULO       | F <sub>2</sub>                                                                            | Increased IP <sub>3</sub> turnover<br>Activates phospholipase-c |
| HUMAN AMNION CELLS          | P <sub>2</sub> Y                                                                          | Activates phospholipase-c                                       |
| CHONDROCYTES                | $P_2$                                                                                     | Increase in prostaglandins                                      |
| BLOOD-BORNE CELLS           |                                                                                           |                                                                 |
| Mast cells                  | $P_{2Z}(A_2)$ $P_{2Z}(A_2)$                                                               | Degranulation                                                   |
| Immune cells                | $P_1^L(A_2)$                                                                              |                                                                 |
| (lymphocytes, granulocytes, | $P_{2Z}^{1}$                                                                              | Depolarization; Membrane                                        |
| splenocytes, leucocytes,    | 24                                                                                        | permeabilization                                                |
| basophils, thymocytes,      |                                                                                           | •                                                               |
| macrophages, neutrophils)   |                                                                                           |                                                                 |
| Platelets                   | Рош                                                                                       | Aggregation                                                     |
| Erythrocytes                | P <sub>2T</sub><br>P <sub>1</sub>                                                         | 0000                                                            |
| HI J UIII OCJ CCB           | P1                                                                                        |                                                                 |
|                             | P <sub>2</sub> Y                                                                          |                                                                 |
| MEGAKARYOCYTES              | P2Y<br>P2Z<br>P2T                                                                         | Excitation                                                      |
|                             | <sup>-</sup> 2T                                                                           | EVCTORCION                                                      |
| SECRETORY CELLS             | D                                                                                         | Confort and annual and                                          |
| Alveolar type II cells      | <sup>P</sup> 2Y                                                                           | Surfactant secretion                                            |
| Parotid acinar cells        | $P_{2Y}$                                                                                  | Amylase secretion                                               |
| Pancreatic B cells          | P <sub>2</sub> Y                                                                          | Insulin secretion                                               |
| Pancreatic A cells          | P <sub>2Y</sub><br>P <sub>2Y</sub><br>P <sub>2Y</sub><br>P <sub>1</sub> (A <sub>2</sub> ) | Glucagon secretion                                              |
| Intestinal epithelial       | P <sub>2</sub> -                                                                          | Ion fluxes                                                      |
| cells                       | _                                                                                         |                                                                 |
| LLC-PK <sub>1</sub> cells   | P <sub>2</sub> cells                                                                      | Increases intracellular                                         |
| Ţ                           | ۷                                                                                         | Ca <sup>2+</sup>                                                |
| EHRLICH ASCITES TUMOUR      | P <sub>2Y</sub>                                                                           | Inhibits proliferation                                          |
| CELLS                       | <u>~ 1</u>                                                                                | <del>-</del>                                                    |

cAMP, cyclic AMP; CNS, central nervous system; EDRF, endothelium-derived relaxing factor;  ${\rm IP}_3$ , inositol 1,4,5-trisphosphate.

Potent actions of ATP on vascular endothelial cells via  $P_{2Y}^{-}$  purinoceptors leading to release of endothelium-derived relaxing factor and vasodilatation have been described now in many vessels 38.60-64.  $P_2^{-}$  purinoceptors have been shown to regulate ion transport in epithelial cells from a variety of different sources, including intestinal epithelial cells and kidney epithelium, where ATP stimulates C1 transport and alters  $Ca^{2+}$  distribution. ATP also regulates gastric acid secretion and surfactant secretion from type II alveolar epithelial cells 65.66 and parotid acinar cells 67.

ATP has glycogenolytic and hyperpolarizing actions on hepatocytes that are mediated by  $P_{2Y}$ -purinoceptors 37,68,69. Pancreatic B cells respond to ATP via  $P_{2X}$ -purinoceptors to increase insulin secretion, whereas adenosine acts via the  $A_2$  subtype of a  $P_1$ -purinoceptor in pancreatic A cells to increase glucagon secretion 70.

ATP induces calcium-dependent histamine secretion from mast cells  $^{71}$ . The agonist form is the tetrabasic acid ATP $^{4-}$  72 and this receptor has therefore been given the separate subclassification of  $P_{2Z}$ .  $P_{1}$ -purinoceptors of the  $A_2$  subtype have been described on various cells of the immune system, including macrophages, lymphocytes and granulocytes 73. ATP modifies cation fluxes and could thereby deliver the calcium signal for lymphocyte activation  $7^4$  and extracellular ATP has also been shown to stimulate transmembrane ion fluxes in macrophages, possibly via a  $P_{2Z}$ -purinoceptor 75.

ADP causes platelets to change shape rapidly, which leads to platelet aggregation, while  $P_1$ -purinoceptors mediate inhibition of ADP-induced platelet aggregation  $^{76}$ . Since the platelet receptor is unique in being activated by ADP rather than by ATP, it has been classified as a  $P_{2T}$ -purinoceptor.  $P_{2Y}$ -purinoceptors have been demonstrated in turkey erythrocytes  $^{40}$ .

ATP receptors mediating membrane potential changes and contraction of fibroblasts have been described  $^{77,78}$  and the possibility has been raised that ATP released as a cotransmitter with noradrenaline from sympathetic nerves exerts some control of fibroblast function  $^{79}$ . Purinoceptors have also been identified on spermatozoa, osteoblasts, chemoreceptor cells in the carotid body, neuroblastoma, chromaffin adipose, thyroid, salivary acinar and tumour cells  $^4$ .

#### FUTURE DEVELOPMENTS

A strategy to clone a gene encoding  $P_1$ - and  $P_2$ -purinoceptors analogous to the methods successfully used in recent years for muscarinic receptors and adrenoceptors  $^{80,81}$  could lead to clear identification of purinoceptor subtypes and to information that will allow the rational design of better selective agonists and antagonists. Adenosine 5'-0-2-thio[ $^{35}$ S]diphosphate has been proposed as a radioligand for the  $P_{2Y}$ -purinoceptor in purified turkey erythrocyte membranes  $^{82}$ . My own laboratory has recently identified [ $^{3}$ H]- $\alpha$ , $\beta$ -methylene ATP as a strongly binding ligand for the  $P_2$ -purinoceptor  $^{83,84}$  and we are currently collaborating with molecular biologists to clone this receptor and hopefully to use the Xenopus oocyte to examine the expression of its nucleic acid. Cloning and expression of a DNA coding for rat liver ecto-ATPase has recently been claimed  $^{85}$ .

### REFERENCES

- (1) Drury, A.N.; Szent-Györgyi, A. J. Physiol. (Lond.) 1929, 68, 213-237.
  - (2) Burnstock, G. Pharmacol. Rev. 1972, 24, 509-581.
  - (3) Burnstock, G. Neuroscience 1976, 1, 239-248.
  - (4) Burnstock, G. Arch. Int. Pharmacodyn. Ther. 1990, (in press).
- (5) Burnstock, G. A basis for distinguishing two types of purinergic receptor. In: Straub, R.W.; Bolis, L. (Eds.) *Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach*; Raven Press: New York, 1978; pp 107-118.
- (6) Daly, J.W. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 1985, 19, 29-46.
  - (7) Burnstock, G.; Kennedy, C. Gen. Pharmacol. 1985, 16, 433-440.
  - (8) Gordon, J.L. Biochem. J. 1986, 233, 309-319.
  - (9) Kennedy, C. Arch. Int. Pharmacodyn. Ther. 1990, 303, 30-50.
- (10) Burnstock, G.; Buckley, N. The classification of receptors for adenosine and adenine nucleotides. In: Paton, D.M. (Ed.) Methods Used in Adenosine Research. Methods in Pharmacology, Vol.6; Plenum Press: New York, 1985; pp 193-212.
- (11) Burnstock, G. Purinergic Receptors. Receptors and Recognition, Series B, Vol. 12; Chapman & Hall: London, 1981; pp 1-365.
  - (12) Satchell, D. Trends Pharmacol. Sci. 1984, 5, 340-344.

(13) Williams, M. Purinergic receptors and central nervous system function. In: Meltzer, H.Y. (Ed.) *Psychopharmacology: The Third Generation of Progress*; Raven Press: New York, 1987; pp 289-301.

- (14) Cusack, N.J.; Hourani, S.M.O. Structure activity relationships for adenine nucleotide relationships on mast cells, human platlets and smooth muscle. In: Jacobson, K.A.; Daly, J.W.; Manganiello, V. (Eds.) Purines in Cellular Signalling. Targets for New Drugs; Springer-Verlag: New York, 1990; pp 254-259.
- (15) Moody, C.J.; Meghji, P.; Burnstock, G. Eur. J. Pharmacol. 1984, 97, 47-54.
- (16) Van Calker, D.; Müller, M.; Hamprecht, B. J. Neurochem. 1979, 33, 999-1005.
- (17) Londos, C.; Wolff, J.; Cooper, D.M.F. Adenosine receptors and adenylate cyclase interactions. In: Berne, R.M.; Rall, T.W.; Rubio, R. (Eds.) Regulatory Function of Adenosine; Martinus Nijhoff: Boston, 1983; pp 17-32.
- (18) Williams, M. Adenosine and Adenosine Receptors; Humana: New Jersey, 1990.
- (19) Ribeiro, J.A.; Sebastiao, A.M. *Prog. Neurobiol.* **1986**, *26*, 179-209.
  - (20) Daly, J.W. J. Med. Chem. 1982, 25, 197-207.
- (21) Kasakov, L.; Burnstock, G. Eur. J. Pharmacol. 1983, 86, 291-294.
- (22) Kerr, D.I.B; Krantis, A. A new class of ATP antagonist. In: *Proc. Australian Physiol. Pharmacol. Soc.* 1979, 10, 156P.
- (23) Manzini, S.; Hoyle, C.H.V.; Burnstock, G. Eur. J. Pharmacol. 1986, 127, 197-204.
- (24) Houston, D.A.; Burnstock, G.; Vanhoutte, P.M. J. Pharmacol. Exp. Ther. 1987, 241, 501-506.
- (25) Cusack, N.J.; Hourani, S.M.O.; Loizou, G.D.; Welford, L.A. Br. J. Pharmacol. 1987, 90, 791-795.
- (26) Hourani, S.M.O.; Welford, L.A.; Loizou, G.D.; Cusack, N.J. Eur. J. Pharmacol. 1988, 147, 131-136.
- (27) Dunn, P.M.; Blakeley, A.G.H. Br. J. Pharmacol. 1988, 93, 243-245.
- (28) Hoyle, C.H.V.; Knight, G.E.; Burnstock, G. Br. J. Pharmacol. 1990, 99, 617-621.

- (29) Urbanek, E.; Nickel, P.; Schlicker, E. Eur. J. Pharmacol. 1990, 175, 207-210.
- (30) Wiklund, N.P.; Gustafsson, L.E. Eur. J. Pharmacol. 1988, 148, 361-370.
  - (31) Nakazawa, K.; Matsuki, N. Pflügers Arch. 1987, 409, 644-646.
  - (32) Friel, D.D. J. Physiol. (Lond.) 1988, 401, 361-380.
  - (33) Benham, C.D. J. Physiol. (Lond.) 1989, 419, 689-701.
  - (34) Benham, C.D.; Tsien, R.W. Nature 1987, 328, 275-278.
  - (35) Kolb, H.-A.; Wakelam, M.J.O. Nature 1983, 303, 621-623.
- (36) Krishtal, O.A.; Marchenko, S.M.; Obukhov, A.G. *Neuroscience* 1988, 27, 995-1000.
  - (37) Keppens, S.; De Wulf, H. Biochem. J. 1986, 240, 367-371.
- (38) Boeynaems, J.M.; Pearson, J.D. *Trends Pharmacol. Sci.* **1990**, *11*, 34-37.
- (39) Danziger, R.S.; Raffaeli, S.; Moreno-Sanchez, R.; Sakai, M.; Capogrossi, M.C.; Spurgeon, H.A.; Hansford, R.G. *Cell Calcium* **1988**, 9, 193-199.
- (40) Berrie, C.P.; Hawkins, P.T.; Stephens, L.R.; Harden, T.K.; Downes, C.P. Mol. Pharmacol. 1989, 35, 526-532.
  - (41) Dubyak, G.R. Arch. Biochem. Biophys. 1986, 245, 84-95.
  - (42) Häggblad, J.; Heilbronn, E. FEBS Lett. 1988, 235, 133-136.
- (43) van der Merwe, P.A.; Wakefield, I.K.; Fine, J.; Millar, R.P.; Davidson, J.S. FEBS Lett. 1989, 243, 333-336.
- (44) Hoyle, C.H.V.; Burnstock, G. Neuromuscular transmission in the gastrointestinal tract. In: Wood, J.D. (Ed.) Handbook of Physiology, Section 6: The Gastrointestinal System, Vol. I: Motility and Circulation; American Physiological Society: Bethesda, MD, 1989; pp 435-464.
  - (45) Burnstock, G. Acta Physiol. Scand. 1986, 126, 67-91.
  - (46) White, T.D. Pharmacol. Ther. 1988, 38, 129-168.
- (47) Burnstock, G. Purinergic receptors in the heart. In: Korner, P.I.; Angus, J.A. (Eds.) Cardiovascular Receptors: Molecular, Pharmacological and Therapeutic Aspects; Circ.Res. 46, Suppl. 1:, 1980; pp 175-182.
- (48) Björnsson, O.G.; Monck, J.R.; Williamson, J.R. Eur. J. Biochem. 1989, 186, 395-404.
- (49) Legssyer, A.; Poggioli, J.; Renard, D.; Vassart, G. J. Physiol. (Lond.) 1988, 401, 185-199.

- (50) Hume, R.I.; Honig, M.G. J. Neurosci. 1986, 6, 681-690.
- (51) Paton, D.M. Presynaptic inhibitory actions of adenosine on peripheral adrenergic and cholinergic neurotransmission. In: Rand, M.J.; Raper, C. (Eds.) *Pharmacology; Proceedings of Xth International Congress of Pharmacology*; Excerpta Medica: Amsterdam, 1987; pp 267-270.
  - (52) Phillis, J.W.; Wu, P.H. Prog. Neurobiol. 1981, 16, 187-239.
- (53) Fyffe, R.E.W.; Perl, E.R. *Proc. Natl. Acad. Sci. U. S. A.* 1984, 81, 6890-6893.
  - (54) Salter, M.W.; Henry, J.L. Neuroscience 1985, 15, 815-825.
- (55) Burnstock, G.; Allen, T.G.J.; Hassall, C.J.S.; Pittam, B.S. Exp. Brain Res. 1987, Series 16, 323-328.
- (56) Theobald, R.J., Jr.; de Groat, W.D. J. Auton. Pharmacol. 1989, 9, 167-182.
- (57) Allen, T.G.J.; Burnstock, G. Br. J. Pharmacol. **1990**, 100, 269-276.
- (58) Neary, J.T.; van Breemen, C.; Forster, E.; Norenberg, L.O.B.; Norenberg, M.D. Biochem. Biophys. Res. Commun. 1988, 157, 1410-1416.
- (59) Pearce, B.; Murphy, S.; Jeremy, J.; Morrow, C.; Dandona, P. J. Neurochem. 1989, 52, 971-977.
- (60) De Mey, J.G.; Vanhoutte, P.M. J. Physiol. (Lond.) 1981, 316, 347-355.
- (61) Needham, L.; Cusack, N.J.; Pearson, J.D.; Gordon, J.L. Eur. J. Pharmacol. 1987, 134, 199-209.
- (62) Sauve, R.; Parent, L.; Simoneau, C.; Roy, G. *Pflügers Arch*. **1988**, 412, 469-481.
- (63) Burnstock, G. Local purinergic regulation of blood pressure. (The First John T. Shepherd Lecture). In: Vanhoutte, P.M. (Ed.) Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium; Raven Press: New York, 1988; pp 1-14.
- (64) Pearson, J.D.; Gordon, J.L. Biomed. Pharmacol. 1989, 38, 4157-4163.
- (65) Rice, W.R.; Singleton, F.M. Br. J. Pharmacol. 1987, 91, 833-838.
- (66) Gilfillan, A.M.; Rooney, S.A. *Biochim. Biophys. Acta* **1988**, 959, 31-37.
- (67) Soltoff, S.P.; McMillian, M.K.; Cragoe, E.J., Jr.; Cantley, L.C.; Talamo, B.R. J. Gen. Physiol. 1990, 95, 319-346.

- (68) Häussinger, D.; Stehle, T.; Gerok, W.; Tran-Thi, T.-A.; Decker, K. Eur. J. Biochem. 1987, 169, 645-650.
- (69) Buxton, D.B.; Robertson, S.M.; Olson, M.S. *Biochem. J.* **1986**, 237, 773-780.
- (70) Loubatières-Mariani, M.M.; Chapal, J. Diabete Metab. 1988, 14, 119-126.
- (71) Dahlquist, R.; Diamant, B. Acta Pharmacol. Toxicol. 1974, 34, 368-384.
- (72) Tatham, P.E.R.; Cusack, N.J.; Gomperts, B.D. Eur. J. Pharmacol. 1988, 147, 13-21.
- (73) Bonnafous, J.C.; Dornand, J.; Favero, J.; Mani, J.C. J. Recept. Res. 1982, 2, 347-366.
  - (74) Cameron, D.J. J. Clin. Lab. Immunol. 1984, 15, 215-218.
- (75) Steinberg, T.H.; Silverstein, S.C. J. Biol. Chem. 1987, 262, 3118-3122.
- (76) Haslam, R.J.; Cusack, N.J. Blood-platelet receptors for ADP and for adenosine. In: Burnstock, G. (Ed.) *Purinergic Receptors, Receptors and Recognition*. Series B, Vol.12; Chapman & Hall: London, 1981; pp 221-285.
- (77) Joseph, J.; Grierson, I.; Hitchings, R.A. Exp. Cell Res. 1988, 176, 1-12.
- (78) Fine, J.; Cole, P.; Davidson, J.S. *Biochem. J.* **1989**, 263, 371-376.
- (79) Soares-da-Silva, P.; Azevedo, I. *Blood Vessels* **1985**, *22*, 278-285.
- (80) Dixon, R.A.F.; Kobilka, B.K; Strader, D.J.; Benovic, D.J.; Dohlman, H.G.; Frielle, T.; Bolanowski, M.A.; Bennett, C.D.; Rands, E.; Diehl, R.E.; Mumford, R.A.; Slater, E.E.; Sigal, I.S.; Caron, M.G.; Lefkowitz, R.J.; Strader, C.D. Nature 1986, 321, 75-79.
- (81) Kubo, T.; Fukuda, K.; Mikami, A.; Maeda, A.; Takahashi, H.; Mishina, M.; Haga, T.; Hoga, K.; Ichiyama, A.; Kanagawa, K.; Kojima, M.; Hisayuki, M.; Hirose, T.; Numa, S. *Nature* 1986, 323, 411-416.
- (82) Cooper, C.L.; Morris, A.J.; Harden, T.K J. Biol. Chem. 1989, 264, 6202-6206.
  - (83) Bo, X.; Burnstock, G. J. Auton. Nerv. Syst. 1989, 28, 85-88.
  - (84) Bo, X.; Burnstock, G. Br. J. Pharmacol. 1990, (in press)

(85) Lin, S.-H. Cloning and expression of a cDNA coding for a rat liver ecto-ATPase. In: Dubyak, G.R.; Fedan, J.A. (Eds.) *Biological Actions of Extracellular ATP. Annals of the New York Academy of Sciences*; The New York Academy of Sciences: New York, 1990; (in press).